
PMM U.S.S.R.,Vo1.54,No.4,pp.531-538,199O 0021-8928/90 $lO.OO+O.OO 

Printed in Great Britain 01991 Pergamon Press plc 

SEPARATION-FREE FLOW AROUND A BLUNT BODY BY A 
HIGH-VELOCITY ELASTIC-PLASTIC FLOW* 

L.M. FLITWAN*" 

A flow problem in which the well-known Lavrent'ev assumption about the 
closeness between the velocity and stress fields in the high-velocity 
motion of a rigid body in a solid medium and the analogous fields from 
the solution of the hydrodynamic problem /l/ is translated into the 
language of asymptotic representations, is considered. The ratio 
between the yield point 5% and the velocity head is the small parameter. 
The unknown boundaries of the elastic and plastic zones and the 
unloading wave front are found in a zero approximation (the hydrodynamic 
problem). The dimensions of the plastic zone during flow around the 
body turn&? out to equal (s/B)", where a=% for a cylinder and a='13 
for a Sphere and u is the shear modulus. 

R solution of the boundary-layer type that overcomes the 
shortcoming in complying with the plastic flow condition, is examined 
near the body. A first approximation is constructed in the whole flow 
domain. Formulas are presented for the strength corrections to the 
maximum normal stress and the force acting by the flow on a sphere or 
cylinder. 

1. Formulation of the probtem. An incompressible elastic-plastic infinite stream flows 
around a rigid body with a smooth surface S in the steady-state mode. The body is at rest in 
a Cartesian Euler XyZ coordinate system, and the x-axis coincides with the flow direction at 
infinity. The flow far ahead of the body (x-.-w) is homogeneous, is not sheared, and 
the pressure pa’ therein is considered to be sufficient so that the flow is separation-free, 
with velocity c, where I?=>,= with b the velocity of the transverse elastic waves. 

We realize the following a priori flow scheme that is symmetric relative to the x-axis 
(see the figure) for the plane and axisymmetric problems. Far from the body e, the material 
is in the elastic and irrotational state (the zone Q,). Passage to the plastic (vortex) state 
is realized at the front of a transverse shock ABCD.The particles of the medium behind the 
front SectionABC continue to remain in this state until the reverse passage into the elastic 
state on the unloading wave CP in the domain &+. The particles are unloaded elastically at 
once in the zone Q2,. Tangency of the curvilinear zone boundary AB of the zone and the 
normal or conicaltransversewave front making an angle OL = b/c with the X-axis occurs at the 
point B. The boundary of the unloading zone starts from a certain point C on the front BD. 
Let us emphasize a peculiarity of the wave CD. Unlike the usual elastic transverse wave, 
the jump in the shear stresses thereon is constrained by the plasticity condition. Particles 
intersecting the front CD arrive in the plasticity state only at the front. The possibility 
of the existence of this kind of solution in the neighbourhood of the BC and CD wave fronts 

can be shown by simple model problems. 
The curved boundaries are not known. More- 

over, the velocity field u, the pressure p, 
the stress deviators T = (rif}, that are normal- 
ized by the velocity c, the velocity head QC' 

and the yield point zs in the Saint-Venant- 
--c-c- Mises plastic model are sought. We select half 

the characteristic dimension of the body section 
r0 (use the figure) as the unit of length. 

The mathematical problem of determining 
A 5 all the unknown elements consists of solving 

the equations Of incompressibility arid conservation of; momentum outside the domain Q,, 
Book's law in the elastic zones 0% and $249 
“Prikl.Matem.Mekhan.,54,4.642-651,199o 

the Saint-Venant-Mises plasticity equation in 
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the domain 8, taking the matching conditions into account for the solutions on the transverse 
shock ABD and the unloading wave CF, the laws of non-penetration and friction on the surface 
S, the behaviour at infinity, and the symmetry conditions on the x-axis: 

div n = 0, crii = --p + fzrii (1.1) 

-&u=f grad(u)? +rotuxu=-ggradp+f2divT (Q,UC&Un,) (1.2) 

T=& 1 ~~~=constdx, I(T)=+T~~T~~< I (n,) 
-m 

T = T (M,) + + 1 e Ii,xonst dx (a,) 
x* 

T = eJ-“2 (E)+ J (T) = 1 (Q,) 

h&J = [a,,1 = 0, [u,l u, = f2 [T”,l (AEm) 

[J PI = 01 W) 

a/azJ (E) = 0, (CL T ICD = T Ic (CD) 

B/hJ [El = [ul = [pl = 0 (CF) 

u, = 0, Tnt = --1 (S) 

.u = (1, 0, 0), p = po, T = 0 (z + - ;u) 

U, = 0. Tc,r = 0 (Y = 0, x, y @G e,) 

f2 = Mpc"), m = MN 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

Here n, z are the normal and tangent to the curve mentioned, M, is a certain point on 
the unloading fronts CF and CD, z* is its coordinate on the x-axis, the asterisk denotes 
the matrix transposition operation, and p is the density of the medium. 

The integrals in (1.2) and (1.3) are taken between - w along the streamline 1 and the 
running point and are understood to be integrals of generalized functions. 

Hooke's law (1.3),(1.4) is written in the form of an approximate relation between the 
deviator T and the strain rate tensor e = {Ebb} for steady-state motion. Integration in the 
exact expression for this law should be performed along the streamline. 

The problem under consideration will be studied for the following constraints on the 
parameters 

j'<l, m<.l, j2m-'Ql (1.13) 

Physically the constraints (1.12) mean that the strength is secondary in the whole flow 
domain, the pressure is the principal part of the stress, and the flow is almost hydrodynamic. 
The condition of being separation-free, that is questionable at first glance, is actually 
natural. It is realized for an ideal fluid even when the equality p,=O is satisfied. It 
can be expected that for f<<l small pressure values at infinity will be sufficient for the 
cavern behind a smooth convex body to collapse. But even whed a small zone of flow separation 
from the body appears, the drag force obtained because of the strength of the medium will not 
change substantially. It can be used to correct the hydrodynamic drag force that will already 
be non-zero. 

The condition rnel is satisfied for the majority of materials, while the last inequality 
is equivalent to the high velocity condition balcz.=zgl - the flow is supersonic in the transverse 
waves. The streamlines in the elastic zone turn out to be remote from the body and practically 
straight lines, and consequently, the approximate taken in (1.3), (1.4) will be justified. 

The incompressibility can be taken since shears, and not changes in the particle volumes, 
are more important in a flow. Moreover, this enables us to solve problems with final formulas. 
In practical situations a somewhat larger value of the density should be taken than in the 
unloaded state of the medium, the density of a packed material. 

Relationships (1.5) reflect the ideally plastic behaviour of a material without hardening 
and without taking account of the contribution of the elastic strains to the tangential 
stresses. Although this is the simplest model it correctly reflects the substance of plas- 
ticity: in practice the unbounded growth of strain for a limited level of deviaton str(ess 
components. 

It follows from the condition of continuity of the second invariant (1.7) and the 
plasticity condition (1.5) that the plasticity condition is satisfied on the line AB on the 
elastic zone side. 
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It is assumed that particles of the medium slide along the surface S, where there are no 
explicit constraints on the tangential velocity component (as for a viscous fluid, say). The 
plasticity condition is then formulated on the boundary S. It is assumed that the pressure is 
sufficiently large because of the high-velocity nature of the flow and the presence of the 
pressure pm at infinity so that the dry friction law changes to the plastic flow law on the 
body surface /2/. 

The conditions for the beginning of unloading at once behind the shock front (1.8) (they 
are to determine the location of the point C) and on the line CF (1.9) require a knowledge of 
the finite strain tensor E = (G. The rule for calculating this tensor is indicated in 
(1.2) and the jump in the tensor E on passing through the shock should be taken into 
account. 

Therefore, the problem of the stationary flow around a rigid body by a high-velocity 
elastic-plastic medium is to solve the complex non-linear problem (l.l)-(1.11). The 
non-linearity appears in the presence of the unknown boundaries AB and CF, in (1.2), (1.5) 
in conditions (1.6), (1.5) and (1.9). It is impossible to obtain lucid results for the 
application of asymptotic approaches without awkward computations or simplifying assumptions. 

The development of an idea of Lavrent'yev is the key to solving the problem in this 
latter aspect. It consists of the fact that the strength properties of a medium only yield 
corrections to the hydrodynamic results for the high-velocity strain of solids, where these 
corrections are only essential in certain cases, e.g., when determining the flow forces acting 
on the body, say. The determination of such corrections is in fact the content of this paper. 
An asymptotic expansion of the solution is performed in the small parameter f. Two terms of 
the expansion are found, that corresponding to f=O and the next in order of magnitude. 

2. The zeroth approximation. As is seen from (l.l)-(l-11), for f = 0 the number of 
equations and the number of unknowns are not reduced. Only the order of the equation of 
conservation of momentum is reduced and the condition of continuity of the hydrodynamic 
velocity field V and the pressure q outside the body in the flow follows. Only the non- 
penetration condition is satisfied on the surface S. Satisfaction of the friction condition 
from (1.10) is a problem of the next approximation. The question of determining the functions 
V and q is a problem of the separation-free flow around a solid body a steady non-rotational 
ideal incompressible fluid flow. We shall later use expressions known from hydrodynamics for 
the quantities V and q and concentrate our efforts on obtaining strength corrections to the 
hydrodynamic fcelds. 

A knowledge of the velocity V in the zeroth approximation will enable as to determine 
the stress deviator T by means of (1.2)-(1.5) and the zone boundary. The corollary J(T,) = 1 
of conditions (1.5) and (1.7) is used to seek the front AL? (Tc is the stress deviator in the 
elastic domain). At the point B from which a plane conical front extends, the slope of the 
curve AB is made equal to a. The first condition in (1.9) is for determining the unloading 
wave front CF. The deviator T has a discontinuity on the boundary ABD. For f#O a dis- 
continuity in the normal stresses is not allowable because of incompressibility. Cancellation 
of this discontinuity is realized when constructing the first approximation. 

3. The plane problem in the zeroth approximation. The ftou around a cylinder. Following 
/3, 4/, we introduce the complex velocity U(Z) = v, - iv,, which is an analytic function of the 
complex variable z = z + iy = re". For the problem of the flow round a circle of unit radius 
and an ellipse with semi-axes a, 1 

” (z) = 1 - z-2, 1 
v (z) = a-_l l I- ~ 

&rz’ :a8 + 1 1 (3.1) 

We introduce the complex rate of strain s (2) and the complex function r(z). not 
generally analytic, by means of the formulas 

E (z) = E,, - ie,, = v' (z), T (z) = r,, - i& J (T) = 1 z (z))Z (3.2) 

We first present general expressions for the functions ~(2) and the pressure q by 
starting from the relationships (1.3), (l-5), (3.2) and the Bernoulli integral 

r (z) = m-1 (u (2) - 1) (52,) (3.3) 

z (z) = 1/v' (2)/v' Q), J (E) = E (2) E (f) (Q3) 

4 = PO f '/p (1 - I v (~1 la) (outside of Q1) 

and then the formulas for the stresses in the case of a cylinder in the elastic and plastic 
zones 
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‘t rr = -I/ (mr”), 7,e = 0 (52,) (3.4) 
t r7 = CoS 0, TV0 = sin tl (Q,) 

We note that the stresses 7,,, Z,e are independent of r in the plastic sane and the 
D'Alembert paradox holds for the zeroth approximation: the drag force equals zero. We have 
the equation 1 U(Z)- i 1 = m to determine the elasticity and plasticity zone boundaries from 
(1.5), (1.7) and (3.2). 

For the flow around a circle and an ellipse (if we neglect quantities of the order of 

I/m iaz-1 1 compared with unity), this will be a circle with centre coincident with the 
centre of the streamlined figure and the radii 

R = m-“1 = 1/ 2p/Ts, R = 1/(a + 2)/(2m) 

Because of the conditions (1.12) we have R>l. The location of the front BD (see the 
figure) is found at once. The point B has the coordinates za = Rexp [i(a f n/2)1. Thus, the 
characteristic dimensions (and shape) of the plastic zone are found and it is shown that they 
are large compared with the body dimensions. 

In the neighbourhood of the stagnation point z = -i we have an approximate expression 
for the velocity: u(z)= -r(z + 1). This means that a particle on the streamline y=O,z< 

1 (9 = 0) at a finite distance from the stagnation point at a certain time will reach the 
latter in an infinite time. The infinite time is required by the particle and by the fact 
that it departs from the stagnation point. The very same occurs around the point z=+1. 
It is clear that a particle moving along a very nearly streamline O<$<l, will pass around 
the cylinder in a finite time and depart further. We now take a particle far upstream in 
the form of a tiny square with sides parallel to the axes and middle line on the x axis. After 
a long time its middle line comes extremely close to the stagnation point while the upper and 
lower sides, moving along their streamlines, traverse a circle, the particle is transformed 
into a strange, strongly elongated figure. Particles having no common points with the x axis 
will be deformed less, but the closer they are to the x-axis, the more strongly they will be 
elongated. This illustrates the fact that deformations in the flow are large. We will com- 
pute them for a cylinder 

E(Z)=e,, - iC,,= 1 (E(Z)1 zt(Z)I-l)I,~=cu,,stdl= f (e 1 L’ (-2)~1;~constd’P (3.5) 
1 -m 

Here cp.9 are the velocity potential and stream function. 
For .Z=*t, we will have II, = Y and the "residual" strains of the particles in the 

stream can ,be found by evaluating the integral. It is expressed in terms of the complete 
elliptic integral 

E" (y) = - 2i (sign y $- + y [ $ E (k) + (f - $) K(k)]) (3.6) 

k* = 4 (4 + y2)-' 

E”=-ni (O<y<l), 

It follows for limit values of the strain 
from (3.3), (3.5), and (3.6) that 

e,", (+U) = 0, 

E-=-q+ (y>l) 

from the upper half-plane and for lzl>1 

eG(+O) = n (3.7) 

The equation for the unloading sane boundary is found from the first condition of (1.9) 
by assuming that it holds for Iz />I 

Re [e (z).E (z)l = 0 (3.8) 

Using the results (3.1), (3.2), (3.5) and (3.7) it reduces for large and small values of 
y to the form 

sin 28 = 3/5z (1 + 2 COS 28) ye2 4 8 Z ‘/,n, Y > 1 

nr2sin 30 = 2cos 0 =+ tl --f 0, T-Pm, Y(tl 

WOW, the curve y(z), the unloading zone boundary, can be described qualitatively. It 
starts from the point zcz imr’f~ for z=O, decreases monotonically as the coordinate x 
increases (this can be shown), and y=o for s= m. We conclude from the above that the 
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unloading zone boundary is a large distance away from the body of the order of m-"'. The 
front CD is also an unloading zone boundary. 

We obtain the solution for the complex stress t(z) in the unloading zone from (1.4) 
and (3.2) 

T(z)=T(z*) + &(0(z) --v(z*)), z* =r* exp@*) 

Here z* is a point on the unloading zone boundary. According to the results (3.4) and 
(3.8) and the condition on the deviator (1.8) the relations 

T* (z,) = exp 3i0, (y < n-'/z), z (z,) = -i (y > m-'/E) 

will hold for y< n-'/x and y>ln-'j?. 
The construction of the zeroth approximation in the problem for the flow around a circle 

is completed. The solution for other bodies can be obtained by analogy with the above expo- 
sition. 

4. The zeroth approximation in the problem of the fknd aroMd a sphere. The zeroth 
approximation in the axisymmetric, or generally spatial, case is constructed in the same way 
as for plane strain. However, in technical respects it is mord complicated to do this. Con- 
sequently, we will confine ourselves to relying on the resu$ts of investigating fields in the 
elastic and plastic zones. 

The following are the expressions for the velocity potential, the particle velocity, the 
pressure, the stress J(e) and the radius of the plastic zone 

CD = [r + (2f71 cos 0, v = grad D', Q = p0 + 1/z (1 - v") (4.1) 

-% = 2%39 = 2288 = (me)-', TrB = 0 (8,) 

J/2% = Tee = zpp = --dcosO, 7,@ = d sin 0, d = (1 + 2 cosz 0)-'/z 

J (e) = 9/4r~8d-2, R = (3/am-2)'1a 

We have for the streamline E = const j3, 4/ 

(r2 - r-l) sin2 e = 5 = const, p = const 

Here r,p,e is a spherical system of coordinates with origin at the centre of the sphere, 
and the angle 8 is measured from the x-axis. 

The radius of the plastic zone is less than in the plane problem, however, even in the 
case of a sphere R>l. The stress deviator T in the plastic zone is also independent of r. 
The location of the conical front BD is determined as in Sect.3. 

5. on an inner ezpansion (boundary layer). The purpose of constructing a boundary-layer 
type solution is to find the stress deviator T from (1.5) for f<l and from the conditions 
(1.10). The friction condition would not be satisfied in the zeroth approximation, consequently, 
corrections O(1) to the tensor T should be expected. At the same time, it is shown in /5, 
6/* (*See also Flitman, L.M., On the boundary layer in certain problems of the dynamics of a 
plastic medium. Preprint No.150, Inst. of Problems of Mechanics, Academy of Sciences of the 
USSR, Moscow, 1980.) that corrections to the velocity will be small of the order of f. The 
properties of solutions of the flow problems under consideration thereby differ radically from 
the properties of solutions in viscous fluid dynamics, where the correction to the velocity 
is 0 (1) near the body. This difference is due to the fact that particle slip around the 
body is achieved during flow by a plastic flow, but there is a constraint on the magnitude of 
the shear stress in the form of the Mises plasticity condition. Adhesion is required for a 
viscous fluid in the classical formulation and there is no constraint on thetensorT. 

The general equations of non-stationary plastic flow near a rough surface S (of boundary- 
layer type) are obtained and investigated in /5, 61. Even in cases of the simplest body geo- 
metry their exact solutions are not found successfully and it is necessary to rely on elec- 
tronic computer calculations. However, the following facts /5, 6/ are sufficient for the 
purposes of this investigation: in principle, corrections of the above-mentioned order exist 
for the stresses and velocities of boundary-layer type (i.e., they vary rapidly around the 
surface S and decrease to zero with distance from the body), the boundary layer thickness is 
of the order f, the asymptotic approach being used contains no internal contradictions, the 
normal stress on areas parallel to the surface of the streamlined body varies slightly, and 
therefore, their values from the external expansion can be utilized to determine these stresses 
on the body (there are ready formulas for the shear stress on a body in the form of the second 
condition in (1.10)). 

6. Outer asymptotic ezpansion. First approximation. It follows from the previous results 
that values Of components of the tenSOr T and the location of the zone boundaries can be 
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considered found on xetaining terms not smaller than 0 (f”) in expressions for the desired 
quantities u,p, T Moreover, it became known that the stress a,,,to O(f") accuracy, does 
not change on intersecting the boundary layer. 

Let us determine the corrections to the velocity and pressure in the outer asymptotic 
expansion. We then obtain the uniform asymptotic expansion of all the desired functions to 

Q (i") accuracy. The corrections under discussion are of the order of?. We set 

Y = V + f"W, P = p + f"S (6.1) 

The usual process of substituting the representations (6.1) into the fundamental equations 
and conditions (l.l)-(1.11) and linearizing leads to the following equations and conditions 
for the corrections in the whole flow domain: 

div I\' = 0, VP + [rot W r: V] = div T; P = s + V-W 

[W,l = 0, [W,l = I%l%l/Un, b1 = hl ==+ 

[PI = V” -I {v-r*~%J + Vn h”l) (ABD) 

[W] = 0, [s] = o=i IPI = 0 (CF); w, = 0 (S) 

w=s=p=o (x+-cc) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

Relations (6.2) are a linearized system of equations of ideal fluid dynamics, where divT 
plays the part of the given mass forces. 

In the elastic sane div T = 0 since the flow ahead of the transverse wave front is 
irrotational while a vortex field occurs only as this front.Then it follows from the second 
equation in (6.2) and the condition for the function P from (6.5) that P = 0 in the elastic 
zone. The jump of this function on the wave front ABiJ is given by the fourth condition in 
(6.31, which means that from the Bernoulli integral along the arc 2 of the streamline of the 
field V 

aP,/aZ = 1 V 1-l (I’. div T) (8.6) 

the function P is defined completely by a quadrature. 
We then use the second equation in (6.2) to determine the vortex Q =rot W. Let us 

project this equation in two different directions that do not coincide with the direction of 
the streamline at each point of the domain. We obtain two finite linear relationships con- 
necting the components of 62. Let us append the condition diva = 0 to them. A projection 
in one direction is sufficient in the plane and axisymmetric case since the vector 0 has 
just one non-zero component. The vortex of the desired field W thereby turns out to be 
expressed in terms of P and T. Taking account of the first equation in (6.2) and the con- 
ditions (6.3)-(6.51, we arrive at the problem of determining a field by means of its vortex 
and divergence and by the conditions just mentioned. 

7. The stresses and forces acting on u bodg in a flow. We have the following expressions 
for P on the axis of symmetry and on the surface of a body from an examination of the Bernoulli 
integral (6.6) on the streamline 9 = O(e =O,n, r> 1; O( O( a, r = l)together with the condition 
P = 0 for r>R, 8= n,,the condition on the jump of the function P on the wave front from (6.3) 
and from the previous results: 

P (r, n) = 3 In (R/r), P (I, 0) = 3 (In R-l- CosB) (a Cylinder) (7.1) 

A formula can now be obtained for the dimensional normal stress at the frontal stagnation 
point, maximum in absolute value 

-o,,.=P0 + 

(a cylinder) 

(a sphere) 

(74 

The desired strength correction to the hydrodynamic pressure is given by the last com- 
ponent in these expressions. Starting from the results (7.1), the last equality in (6.2), and 
expression 17.4) for u,,, analogous expressions can be obtained for o,, at the rear stag- 
nation point. 

To evaluate the force of the flow on the cylinder and sphere by the formula 



F=2j(o,,co~e-_ie~,,sine),=~B(~)d~ 
!I 
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(7.3) 

B (e) = 1 (cylinder), B (0) = n sin 8 (sphere) 

we have expressions for the stresses for r=i 

urr = -q + f2 (r,, - 4, Trg = -1 

s = P - W.V = 3 (In R - 1 - cos 0) + 2 sin 0 wg 

z r, = cos e (a cylinder) 

(7.4) 

The contribution of the quantity q equals zero (D'Alembert's paradox). The still unkown 
function ~a (1, e) remains in (7.3) and (7.41. We will use the method of series expansion in 
trigonometric functions of the angle 8 in the problem of determining the fields Q and w and 
we note that only the second Fourier component we@' is necessary to find the force. Qmit- 
ting the long discussions and computations for analysing the fields P,Q and W, we present 
the final results obtained to accuracy O(R-‘) 

we@) = A sin 20; A = -4.907 (a sphere) A = 3 (a cylinder) 

We calculate the equivalent stresses by (7.3) and represent it in the dimensional form 

F = Br,,%, + 0 (i/R) 

B=4+7n (a cylinder of radius r0 and length rO), B = 55.2 (a sphere of radius I^~). 
Comparing the ratio between the force and the area of the middle section of the body in 

the flow in the plane and spatial cases, we conclude that the relative difference is 27%. At 
the same time, the ratio between the strength correction and the maximum normal stress in the 
planar and spatial cases depends on m and changes from 3.3 for me1 = 10 to 4.5 for m-l = 200. 
Results and achieved with less labour in the planar problems than in the spatial problems, and 
consequently, the comparison of the solution obtained can be used to correct the planar problem 
solutions. 

For applications it is important to indicate the dimensions and shape of the plastic zone 
since the passage into the plastic state can be identified with fracturing of the medium. The 
plastic zone can be represented approximately in problems of the flow around a cylinder (sphere) 
as a semi-infinite body consisting of a semicircle (a hemisphere) of radius R = rndia (R = m-‘/a) 
and a half-strip (a cylinder) behind it of the same dimensions. A hypothesis is equally likely 
that the plastic zone will be analogous for other smooth bodies with characteristic dimensions 
that are not radically different. It has been shown for an ellipse that the zone dimension 
is proportional to the root of half the sum of its axes, which confirms the hypothesis. The 
ratio between the plastic zone dimensions in the plane and spatial cases equals m-V.. This 
means that solutions of planar problems with a correction according to the last formula can 
be utilized to estimate the dimensions of the plasticity zone for moderate values of m. 

Remarks. 1". If the assumption ca/bs>l is replaced by the condition clb < 1 then the 
elastic velocity field will contain a vortex part. A transverse shock and the domain of intense 
vortex motion vanish. The dimensions of the plastic domain increases, but the field in the 
neighbourhood of the streamlined body, particularly in the boundary layer, varies only slightly. 
Such assertions enable us to examine the selfsimilar problem of a cylinder expanding and moving 
along the axis, surrounded by a plastic medium /5/. 

Let us emphasize that the boundary-layer representation depends only on the seroth approxi- 
mation and, consequently, it is conserved completely as the ratio clb changes. Therefore, 
slight sensitivity of the drag force to such changes can be expected. The maximum normal stress 
on the body surface (7.2) changes because of the growth of the plastic domain, but weakly, 
since it depends logarithmically on the dimension R of this domain. 

20. On changing to a more complex plastic model, for instance, the Prandtl-Reuss model 
/i'/, the location of all the zone boundaries is conserved for c/b31 because it is determined 
only by the seroth approximation. The deviator T in the elastic zone retains its value. In 
the plastic zone it changes and will be determined from the following Prandtl-Reuss equations 
written for the steady flow of an incompressible medium along the arc 1 on the zeroth approxi- 
mation streamline: 
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It hence follows that the Saint-Venant-Mises equations utilized in this paper will be 
satisfied to within a small parameter m. This parameter will be substantial only at a 
significant distance from the body boundary. The transverse shock vanishes there and stresses 
on the zone boundaries are made continuous. However, the flow will be close to that considered 
near the body and the results obtained for the stresses and forces acting on the body can be 
used for an approximate estimate of the real quantities. 
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THE THEORY OF THE FRACTURE OF A SUPERCONDUCTOR IN A MAGNETIC FIELD* 

E.A. DEVYATKIN and I.V. SIMONOV 

The stress-strain state of a superconductor in a static magnetic field is 
investigated from the point of view of the possibility of fracture. Only 
one force factor is taken into account, namely, the interaction between 
the field and the surface currents generated by the magnetic field (the 
Meissner effect /l/l. When there are stress concentrators present (corner 
points, microcracks, inclusions etc.) comparatively weak magnetic fields, 
for which the specimen does not lose its property of ideal 
superconductivity, may turn out to be dangerous /l-3/. However, the 
formulation of the problem remains correct when the superconductor 
transforms into the normal phase (or simply for a normal conductor) in a 
variable intense magnetic field under skin-effect conditions and in a 
quasistatic mechanical state. In this case t,att, is the condition of 
quasistatics, where t, and t, are the characteristic times of 
variation of the magnetic field and the range of wave deformation (volume 
or shape) of the characteristic dimension of the specimen. Moreover, 
when there are many factors present, this makes the problem a 
multiparametric one and extremely complicated to analyse, a preliminary 
investigation of the effect of each of these factors separately is 
advisable. The properties of the solutions of plane problems are 
analysed in detail, in particular, using the examples of regions of 


